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ABSTRACT 

An additive formula for the Milnor number  of an isolated complex hyper- 

surface singularity is shown. We apply this formula for studying surface 
singularities. Durfee's conjecture is proved for any absolutely isolated sur- 
face and a generalization of Yomdin singularities is given. 

1. I n t r o d u c t i o n  

Let f :  (C a, 0) -+ (C, 0) be the germ of a holomorphic function with an isolated 

critical point, (V, 0) (the germ of) its zero locus and Ff,o its Milnor fibre, [15]. 

It is known that Ff,o has the homotopy type of a wedge of (n - 1)-spheres; the 

number #(V, 0) of ( n -  1)-spheres is called the Milnor number of (V, 0). The 

topology of Ff,o and its relation with geometric invariants of (V, O) have been 

studied extensively. 

The aim of this work is twofold. First, we study the relationship between 

the topology of Fi,o and a partial resolution of (V, 0). We show an additive 

formula for #(V, 0) and as a consequence we prove Durfee's conjecture 6pg < # 
for any absolutely isolated singularity of surface. Secondly, we introduce a new 

class of singularities called t-singularities, see definition in Section 3. For such 

a t-singularity the above (geometric and topological) invariants can be obtained 

from the first two terms of the Taylor expansion of f around the singular point. 

For an isolated plane curve singularity (C, 0) C (C 2 , 0) we have the well-known 

formula: 

(N) #(C,O)=d(d-1)+ E # ( C ' x ) + l - r '  

zeSing(C) 
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which relates the number r of different tangent lines of (C, 0), the multiplicity 
d of C at 0, the Milnor number it(C, 0) and the Milnor numbers of the strict 

transform C of C after one-point blow-up at its singular point. 

In higher dimensions, after one-point blow-up, the strict transform V of (VI 0) 

can have non-isolated singularities. Parusifiski, [17], defined the generalized Mil- 

nor number It(M; Z) for hypersurfaces Z in a compact complex manifold M. 
This invariant generalizes the notion of Milnor number and behaves well under 

blow-up. Using the generalized Milnor number, a similar formula to (N) for an 

isolated hypersurface singularity (V, 0), relating 
ber and some generalized Milnor number of its 

This formula appears in Section 2, Theorem 1. 

In the surface case the Milnor number #(V, 0) 

its multiplicity, its Milnor num- 

tangent cone, can be obtained. 

is equal to the dimension of the 

C{x,y,z} where J(f) is the jacobian ideal finite dimensional complex vector space j(f) 

of f in C{x, y, z}, [16]. Also It(V, 0) can be computed from the Newton polyhe- 

dron of f when the polyhedron is non-degenerated [8]. Moreover, an interesting 

formula, given by Laufer [9], gives It(V, 0) in terms of some invariants of a reso- 

lution of the singularity of (V, 0). One of these invariants is the geometric genus 
pg of the singularity. Durfee, [3], conjectured that the geometric genus and the 

Milnor number satisfy the inequality 6pg _< It. This is an old open problem in 

Singularity Theory. In Section 3 the formula in Theorem 1 is used for proving 

this conjecture for any surface singularity such that it can be resolved only by 

blowing-ups with a point as center. 
In sections 4 and 5 we obtain some formulae for #(V, 0) in terms of geometric 

and topological invariants of the projective plane curves defined by the homoge- 

neous polynomials appearing in the Taylor expansion of f around 0. Let 

f : fd+ fd+k d-''" 

be such an expansion. Let D and T denote the divisors in l~ defined by the 

homogeneous polynomials fd and fd+k and Sing(D) the singular locus of D. Note 

that D is the projectivized tangent cone of (V, 0) at the origin. A singularity (V, 0) 

which satisfies 

(*) Sing(D) n T = 0 

is called a Yomdin  singularity. The study of Yomdin singularities comes from 

the papers of Yomdin [26] and L6 [11] about hypersurfaces with one-dimensional 
singular locus. Several (topological) invariants have been calculated for these 

singularities: complex monodromy, [1], [20], polar invariants [14], spectrum of the 
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singularity [19], zeta-function of the monodromy [5]. The topological determinacy 

order for a Yomdin singularity (V, 0) is equal to (d + k) and its Milnor number 

is given by the formula, see e.g. [14], 

It(V, 0) = (d - 1) 3 + k E It(D, P),  
PESing(D) 

where #(D, P) is the Milnor number of D at P (condition (*) implies that D is 

a reduced plane curve and then D has only isolated singularities). The geometry 

of the pair (i72 D) contains interesting information about  the topology and geo- 

metry (resolution) of the germ (V, 0). This fact has been used to disprove several 

conjectures. Luengo [13] showed examples, with k -- 1, for which the It-stratum 

is not smooth, Artal-Bartolo [1] found a counterexample to a Yau's conjecture 

[25] proving the non-determinacy of the topological type of the singularity by 

the link of the singularity and by the characteristic polynomial of the complex 

monodromy. 
In order to study further the relationship between the geometry and topology 

of this kind of singularities it is necessary to deal with singularities whose pro- 

jectivized tangent cone D C p2 is not reduced. This is one of the goals of this 

work. Let Dred be the reduced divisor in l? 2 determined by D and p its degree. 

We introduce the notion of t-singularity and prove: 

THEOREM 4: Every t-singularity (V, 0) is isolated. Its Milnor number is equal 

to 
#(V, O) = (d - 1) 3 + k .  (e(D) - 3d + d 2) + k(d - p)(d + k), 

where e(D) is the Euler characteristic of D. Moreover, the topological type of 

(V, O) is determined by the (d + k)-jet o f f .  

This result is interesting because it gives the topological determinacy of (V, 0) 

under relatively weak transversality conditions (D may be non-reduced). In fact, 
these seem the most general conditions to obtain (d + k) topological determinacy 

order. 

It seems of interest to deal with polynomials f = fd + fd+k of three complex 

variables which have only two non-zero homogeneous terms. Let (V, 0) be its zero 

locus. Next we study the most general transverality condition which implies that 

(V, 0) has an isolated singularity. Theorem 5 gives the Milnor number of such a 

surface. 

THEOREM 5: Let f = fd + fd+k be a polynomial in three complex variables. Let 

(V, O) be the germ of surface at 0 defined by the zero Iocus of f . Then (V, O) has 
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an isolated singularity if and only if Sing(D) M Sing(T) is empty. In this case the 
Milnor number of (V, O) is given by the formula 

# (V ,O) - - ( d - 1 ) 3 +k ( e ( D) +d 2- 3 d+  ~ ( (D,T)p-1) ) ,  
PCSing(D)AT 

where (D, T) p denotes the intersection multiplicity of both curves at P. 

Therefore the above formula for the Milnor number generalizes the one in 

Theorem 4. Nevertheless, in general the topological determinacy order for the 

polynomial fd+fd+k will be greater than (d+k). We show some examples related 

with this fact. 

In [5] we have studied the zeta-function of the complex monodromy of (V, 0). 

We gave an explicit procedure for computing the zeta-function of any singularity 

defined by a polynomial fd + fd+k, isolated or not. Nevertheless, this procedure 

does not give explicit formulae for the Milnor number as in Theorems 4 and 5. 

Finally in the last section of the paper we study the global situation. Namely, 

for a projective surface Z in ~3 given by fd wk + fd+k = 0 we describe all its 

singularities and compute their Milnor numbers, see Theorem 6. Milnor numbers 

are computed using our previous results. Note that in case k = 1 this kind of 

description was used by Soares and Giblin for studying series of surfaces, [211. 

This paper contains a part of the Ph.D. Thesis of the author written under 

the supervision of I. Luengo. I want to thank I. Luengo and E. Artal-Bartolo 

for their support and patience during the preparation of both the thesis and the 

paper. 

2. A d d i t i v e  f o r m u l a  for  t h e  M i l n o r  n u m b e r  

Let f :  U C C n --+ C be a holomorphic function, U a neighbourhood around 

the origin, f(0)  = 0 and (V, 0) the germ of the zero locus of f.  It is known, see 

[10], [15], that there exist e, sufficiently small, and (f with 0 < (f << e such that if 

Be is the open ball in C ~ of radius e centered at the origin and D~ is the open 

punctured disc in C of radius if, then f restricted to Be VI f - l (D~)  is a smooth 

locally trivial fibration. A fibre of this fibration is called the M U n o r  f ibre  o f  f 

a t t a c h e d  t o  0 and it is denoted by Ff,0. The topo log ica l  M i l n o r  n u m b e r  of 

(V, 0) is the integer 
#(V, 0) := ( -1 )n- l (e (Fs ,0 )  - 1) 

where e(A) denotes the Euler characteristic of the set A. Obviously, if (V, 0) has 

an isolated singularity then the topological Milnor number is the usual Milnor 

number [15]. The next two examples will be used in the paper. 
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E x a m p l e  1: Let g: (C '~, 0) --4 (C, 0), h: (C m, 0) --~ (C, 0) and f ( u ,  v) = g(u) + 

h(v): (C n x Cm,0) ~ (C, 0). Let (V,0), (D,0) and (T, 0) be the germs of hyper- 

surfaces defined by f = 0, g -- 0 and h = 0 respectively. Since FS,0 is the join 

space of Fg,0 and Fh,O, e.g. see [2], the topological Milnor number of (V, 0) is 

equal to the product of the topological Milnor numbers of (D, 0) and (T, 0). 

E x a m p l e  2: Let h, g �9 C{x, y} such that h = 0, (g -- 0) defines the germ of a 

singular (respectively smooth) plane curve (D, 0) (respectively (T, 0)). Suppose 

that  (D, 0) and (T, 0) have no common branches. Let ~ := h + zkg and let (V, 0) 

be the germ of surface defined by T = 0. Let s be the intersection multiplicity 

of (D, 0) and (T, 0) at the origin. After an analytic change of coordinates we 

may assume that  g = x, h = y~ + x r ( x , y )  and ~ = y~ + x r ( x , y )  + z k x  with 

r(0, 0) = 0 because the origin is a singular point of (D, 0). Hence the topological 

Milnor number of (V, 0) satisfies 

It(V, O) -- (k - 1) #(D, 0) + k (s - 1). 

We prove it as follows. For k = 1, we make another change of coordinates such 

that yS + x z  = 0 is an equation for (V, 0). By Example 1, #(V, 0) = s - 1. 

Suppose that  k > 1. Let r = v s + u r ( u , v )  + w u  E C { u , v , w } .  Let F~,0 and 

Fr be the Milnor fibres of ~ and r that means: 

F~,o = { ( x , y , z )  C B~: x z  k + x r ( x , y )  +yS = (f}, 

Fr = { ( u , v , w )  �9 u w  + u r ( u , v ) + v  s = 6 } .  

The map 7r: F~,0 --4 F~,0, 7c(x, y, z) = (x, y, z k) is a k-sheeted cyclic covering. 

The ramification locus of 7r is the Milnor fibre Fh,o. Then 

e(Fv,o) = ke(Fr  - (k - 1)e(Fh,o). 

After the analytic change of coordinates z0 = w + r ( u ,  v) the function r is analyti- 

cally equivalent to u ~ + v  ~. Thus Example 1 gives e(Fr -- s and the equality for 

the topological Milnor number #(V, 0) has been proved. Note that the singularity 

of (V, 0) is isolated if and only if the singularity of (D, 0) is isolated. 

GENERALIZED MILNOR NUMBER. Let M be a compact n-dimensional complex 

manifold and let 1: be a holomorphic line bundle over M. Let Z be the zero locus 

of a holomorphic global section s of / : .  Parusifiski [17] defined the genera l i zed  

M i l n o r  n u m b e r  of Z in M as follows: 

# (U;  Z) : -  (-1)n(e(Z) - f c(,C.)-Icl(f-..)c(M)), 
JM 
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where c(/~) and el(/:) denote the total Chern class and the first Chern class of 

/:. If Z is smooth the Euler characteristic of Z is given by, see e.g. [7], 

e(Z) = / M  c(s l cl (s 

and then p(M; Z) = 0. Moreover, if Z I is the zero locus of another holomorphic 

global section s' of s then #(M; Z) - #(M; Z') = (-1)n(e(Z) - e(Z')). 

Parusifiski and Pragacz, [18], showed how to compute this invariant. Let S be 

a Whitney stratification of Z. Let x C Z; locally the hypersurface Z is given at 

x by the zero locus of a holomorphic function h: U C C ~ -+ (2, h(0) = 0. Let Fx 

be its Milnor fibre. Since Thom's Second Isotopy Lemma (see e.g. [4] Theorem 

5.8) the topological type of the Milnor fibre Fx is constant along each stratum 

of S. Let #s(Z)  be the constant value of x ~ #(Z ,x)  on S. Let s ~ be another 

holomorphic global section of/2 such that the zero locus Z I of s ~ is smooth and 

transverse to a Whitney stratification S of Z. Then 

#(M; Z) = ~ #s(Z) �9 e(S ". Z'). 
SES 

Indeed Parusifiski, [17], defined #(M; Z, D) for every compact subvariety D of Z 

which admits a neighbourhood U in Z such that U "-D is nonsingular. If the 

Whitney stratification S of Z induces a Whitney stratification ,So of D then 

(1) #(M; Z, D) = ~ us (Z)"  e(S". Z'). 
SCSD 

Let Sing(Z) be the set of singular points of Z. If D1 , . . .  , Dr are all compact 

and connected components of Sing(Z) then #(M; Z) = )-']~1 #(M; Z, Di); for 

example, if Z has only isolated singularities, then #(M; Z) = ~xesing(z) #(Z, x). 

Example 3: If M = p2 and Z is a curve of degree d then #(p2; Z) = e(Z) - 3d+  

d 2 _> 0. The inequality is clear if Z is reduced. If Z is not a reduced curve then 

let p be the degree of the reduced curve Zr~d. Using the above properties of the 

generalized Milnor number we get 

#(p2; Z) = e(Zred) - 3d + d 2 = # ( ~ ;  Zred) + 3p -- p2 _ 3d + d 2 > O. 

ADDITIVE FORMULA FOR THE MILNOR NUMBER. Let (V, 0) C (C ~, 0) be an iso- 

lated hypersurface singularity defined by the zero locus of a holomorphic function 

f .  For studying several topological invariants related to (V, 0) we may assume 
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that f = fd + fd+l + "'" + fT is a polynomial of degree r large enough. Let 

D C ]i ~ -1  be the projectivized tangent cone of V at 0, i.e. D is defined by fd. 

Let Z C It ~ be the projective hypersurface defined by the homogenized f with 

respect to a new variable and let Q be the point of Z corresponding to 0 in V. 

Let 7r: X --+ ]I ~ be the blow-up of 1~ with centre at Q. From now on 2 denotes 

the strict transform of Z, E denotes the exceptional divisor of n and we make 

the usual identification 2 A E =  D. 

In this situation one has the following Noether type formula which relates 

the Milnor number #(V, 0) with the multiplicity of (V, 0) at 0 and another two 

generalized Milnor numbers of the projectivized tangent cone of (V, 0) at 0. 

THEOREM 1: In the previous conditions the following equality holds: 

#(V, O) = (d - 1) n + #(]?n-1 ; D) + #(X; 2, D). 

Proo~ We compare the Euler characteristics of Z and Z. Consider the restric- 

tion map ~r[~-,(z): ~r-l(Z) --~ Z and the sets So := Z \ {Q}  and $1 := {Q}. 

The morphism 7rl~-l(So): 7r-l(S0) --+ So is a biholomorphism and then it is a 

one-to-one fibration. Moreover, the restriction map 7rlTr-l(V): E --+ $1 is a fibra- 

tion over a point. Following [12] the restriction map ~rl,~-~(z ) is a descr ip t ib le  

m o r p h i s m  and then 

e(Tr- ' (Z)  ) = e(E)  .e(Q)  + e ( Z -  Q) = e(E)  + e(Z)  - 1. 

Since e(Tr -1 (Z)) = e(Z) + e(E)  - e (Z  A E)  and 2 A E = D we get e(Z) - e(Z) = 

e(D) - 1. 

From the nice behaviour of the generalized Milnor number under the blow-up 

process, see [17], the following equality holds: 

(2) it(I~; Z, Q) = (d - 1) n + (-1) n-1 (e(D) - h(n - 1, d)) + it(X; 2,  D), 

where h(n  - 1, d) is the Euler characteristic of a smooth hypersurface of degree d 

in I~ -1 . Finally, (2) is equivalent to the equality in Theorem 1 since the germs 

(V, 0) and (Z, Q) are topologically equivalent and the generalized Milnor number 

of D in It m-1 is it(Ilk-l; D) = ( -1)~- l (e(D)  - h(n  - 1, d)). | 

Example  4: If (V, 0) is an isolated plane curve singularity we obtain the formula 

l t ( V , O ) = d ( d - 1 ) +  ~ i t ( V , $ ) + l - r ,  

:~eSing(V) 

where r is the number of different tangent lines of (V, 0) at the origin. 
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Example 5: Yomdin singularities. Let f = fd + fa+k + "'" and T C 11 ~ -1  be 

the divisor defined by fd+k. Assume that (*) Sing(D) N T -- 0 (which implies 

that D has only finitely many singular points {P1,. . .  , Ps } which are not in T). 

If k = 1 then Z is smooth over D and Theorem 1 gives 

#(V, 0) = (d - 1) ~ + Z #(D, Pi). 
i----1 

If k > 1 then singularities of Z on Z N E are in one-to-one correspondence with 

singularities of D. If Pi is the corresponding point to Pi then a local equation of 

at f ,  is 
fd(XX, . . .  ,Xn) + X k u(xO, . . .  ,Xn) : O, 

where fd(x l , . . .  , Xn) = 0 is an (affine) equation of D at Pi, u(0) ~ 0 and x0 = 0 

is an equation for E. Thus 

i = l  i~--I 

By Theorem 1, we obtain the well-known formula for Yomdin singularities, e.g. 

[14], 
8 

#(V, 0) -- (d - 1) n + k ~ #(D, Pi). 
i----1 

3. Dur f e e ' s  con j ec tu r e  for abso lu te ly  i so la ted  surface  s ingular i t ies  

Let (V, 0) C (C 3, 0) be an isolated surface singularity given by the zero locus 

of the germ of a holomorphic function f. Let 7r: M --~ V be a resolution of the 

singularity. The geome t r i c  genus  pg of the singularity is defined by 

pg := dime Hi(M, OM). 

In [3], Durfee conjectured that the geometric genus and the Milnor number of the 

singularity satisfy the inequality 6pg _< #. This conjecture has been extensively 

studied in Singularity Theory, nevertheless it is still open. Using Theorem 1 we 

prove it for any absolutely isolated singularity. 

THEOREM 2: Let 71"1: ~Z _4 (V, 0) be the blow-up at the singular point. Assume 
that fz has only isolated singularities {Xl,. �9 �9 , xs} and Durfee's conjecture is true 

for each of them (f/, xi). Then Durfee's conjecture is true for (V, 0). 

Proof." Let 7r: M -~ 17 be a resolution of the isolated singular points {Xl, . . .  , xs} 

of V. Then the map 7r I O "K: M --+ V is a resolution of the singularity (V, 0). 
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Following Tomari, [24] Proposition 2.5, the geometric genus pa of (V, 0) and the 

geometric genus p~ of (if, xi) satisfy 

6pg = ~ 6p~ + d ( d -  1 ) ( d -  2), 
i=1 

where d is the multiplicity of V at 0. By hypothesis for every singularity (V, xi) 

Durfee's conjecture is satisfied, then 

8 

6pg < ~-~#(?,x~) + d ( d -  1) (d -2 ) .  
i----1 

Let D be the (projectivized) tangent cone of V at 0. The above inequality, the 

formula in Theorem 1 and the fact that #(p2;D) > 0 (Example 2) give the 

inequality 6pg < it for (V, 0). | 

Definition: The surface singularity (V, 0) C (C 3, 0) is abso lu t e ly  i so la ted  if 

there exists a resolution of (V, 0) obtained only by blowing-ups with a point as 

center. 

THEOREM 3: Durfee's conjecture is true for any absolutely isolated surface sin- 

gularity (V, 0) C (C 3, 0). 

Proo[: Let ~r: M -~ V be a resolution obtained only by blowing-ups with a point 

as center. Let us call last singularities those singularities x which appear in 

this resolution process and such that after blow-up a small neighbourhood U in 

the strict transform of V with center x the strict transform of U is smooth. After 

the previous theorem we only need to prove that last singularities verify Durfee's 

conjecture. But any last singularity is a superisolated singularity, [13], i.e. a 

Yomdin singularity with k = 1. Hence for them we have 6pg = d(d - 1)(d - 2) 
and # = ( d -  1) 3 -{-/z(]D2; D)  where d is the multiplicity of the singularity and D 

is the (projectivized) tangent cone. So the theorem is proved. | 

4. t-singularities 

Let us consider a holomorphic function f in three variables with f(0) = 0. Let 

(V, 0) be its zero locus. We need some new notations. Let f = fd + fd+k + ' ' "  
be the expansion of f as a sum of its homogeneous components. Consider fd -- 
h~ 1 . . .  h qs to be the decomposition of fd into irreducible factors. Consider the 
following divisors on p2 : 

(1) For every i E {1, . . .  , s}, Ci the projective plane curve defined by hi, 
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(2) D :=  Z(fd) = qlC1 + " "  + q~Cs the projectivized tangent cone of V at 0, 

(3) Dr~d := C1 + " "  + C~ and 

(4) the divisor T defined by fd+k. 

Let di be the degree of Ci (then d = qldl +- ' "  + %d8) and let p be the degree 

of Dred; it means that p = dl + . . .  + ds. Let A be the set of indices i such that 

qi is greater than one. 

Dei~nition: A surface singularity (V,0) C (C3,0) is called a t - s ingular i ty  if 

there exists a holomorphic function f such that (V, 0) is its zero locus and which 

verifies the following two conditions: 

(i) The intersection of Sing(D~ed) and T in p2 is empty. 

(ii) For every i E A, the curves Ci and T meet at di (d +,k) different points. 

The t stands for the 'weak' transversality condition (ii) in the above definition. 

Notice that  if A is empty then condition (i) is condition (*) for Yomdin singu- 

larities. Therefore the following result, which will be proved in this section, is a 

natural generalization of previous known results for Yomdin singularities. 

THEOREM 4: Every t-singularity (V, O) is isolated, its Milnor number is equal to 

#(V,O) = ( d -  1) 3 + k#(]t~; D) + k ( d - p ) ( d +  h) 

and its topological type is determined by the (d + k)-jet of f .  

Remark that the previous formula for the Milnor number is equivalent to the 

one appearing in the introduction because #(IP2; D) = e(D) - 3 d  + d 2. We prove 

this theorem by a sequence of lemmas. Lemma 1 proves that (V, 0) is an isolated 

singularity. Lemmas 2, 3 and 4 are used for computing its Milnor number. Finally 

with Lemma 5 we prove that (V, 0) is (d + k)-determined. 

LEMMA 1: Every t-singularity (V, 0) has an isolated singular point. 

Proof: It is enough to show that after one-point blow-up all singularities of the 

strict transform V are on the exceptional divisor E. Let ~r: (X, E) -4 (C 3, 0) be 

the blow-up at 0. If Sing(D) is empty then Sing(V) N E is empty too and (V, 0) 

has an isolated singularity. Otherwise, let P E Sing(D). We choose coordinates 

so that the tangent direction corresponding to P is (x, y, z) = (0, 0, 1). Thus, the 

local equations of ~r are x = x lz l ,  y = ylzl ,  z = zl and an equation of ~" in a 

neighbourhood of the corresponding point ]5 = (0, 0, 0) is 

0 : ] ' (Xl ,  Yl, Zl) : fd(Xl, Yl, 1) -t- zkl(fd+k(Xh Yl, 1) + Zlg(Xl, ~]1, Zl))- 
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Notice that  fd(xl, Yl, 1) = 0 and Zl ~-- 0 are an affine equation of D and a local 

equation of E respectively. 

(a) If P E Sing(Dr~d) then fd+k(0,0, 1) ~ 0 because (V, 0) is a t-singularity. 

So fd(xl ,y l ,1)  is a unit in C{xl ,yi} .  Let u(xl~yi) be a kth root of this unit. 

Making the analytic change of coordinates ~ = xl,  ~ = y], 2 = ZlU, the germ of 

D at (2, p) -- (0, 0) is given by fd(2, ~/, 1) = 0, E is given by 2 = 0 and V at 15 is 

defined by fd(x, Y, 1) + 2 k = 0. Hence singularities of V in a small neighbourhood 

of 15 lie on E. 

(b) For i E A, let P be a smooth point of Ci which is not in T. There exists 

an analytic change of coordinates such that 2 -- 0 is an equation of Ci at P,  

E is 5 = 0 and the equation of the germ of V at the corresponding point 15 is 

2q' + 2 k = 0. Therefore all singularities of V around 15 are on E. 

(c) Let P E Ci AT. Since Ci is transverse to T at P we may choose coordinates 

such that 2 -- 0 is an equation of Ci at P, the local equation of T is ~ -- 0, E is 

2 = 0 and V at i 5 is given by 2 q~ + 2k~ = 0. The singular locus of V around 15 

is again on E. | 

COMPUTATION OF THE MILNOR NUMBER. W e  s u p p o s e  t h a t  A is n o t  e m p t y ,  

otherwise Example 5 gives the result. Therefore (ii) in the definition of t- 

singularity implies that  T is a reduced divisor in ]?2. We start considering the 

case k > 1. 

Since (V, 0) has an isolated singularity we may assume that (V, 0) is defined as 

the zero locus of a polynomial f = fd + fd+k + "'" + fr of degree r in C[x, y, z]. 
The projective surface Z C F 3, defined by the homogeneous polynomial f = 

x y z wr g(u w, u has a singular point at Q = (0 : 0 : 0 : 1) which is topologically 

equivalent to (V, 0). Let ~r: X --+ ]i ~ be the blow-up at Q, Z the strict transform 

of Z and E the exceptional divisor. Then Sing(~ 7) A E consists of the curves 

Ci, i E A, and the isolated singularities of D. Let t: be the line bundle O~3(r). 
The homogeneous polynomial f gives a global holomorphic section v of E. The 

surface Z is the zero locus of the section s = 7r*(v) | e - d  of the line bundle 

~* (E) | s  where s denotes the line bundle on X, associated with E and e is a 

section of C. By Theorem 1, the Milnor number tt(V, 0) is computed if we know 

the generalized Milnor number #(X; Z, D). Next we apply the property (1) of 

the generalized Milnor number. For this we need a holomorphic global section 

s' E H~ X, ~*(E) |  and a Whitney stratification $ of 2 such that the zero 

set of s' is smooth and transverse to S. 

For i E A, we set M~ := C~ ~ T  and S~ := Ci \ {Sing(D~r U M~}. Notice that 

Sing(D~r and Mi are disjoint sets. Let ,~ be a Whitney stratification of Z such 
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that Red(Z) := 2 \ Sing(Z) is a stratum. Let S be the following partition of Z :  

(1) The two-dimensional part Red(Z). 

(2) The following parts of Sing(Z) N D : one-dimensional parts {S~}ieA, zero- 

dimensional parts {P: P C Sing(Dr~d)} and {/5: P E Mi}ieA. 

(3) The same strata of 3 which are in Sing(Z) "-- D. 

LEMMA 2: The previous partition S is a Whitney stratification of Z. 

Proof: The only problem for S being a Whitney stratification is over Red(Z), 

Si and zero-dimensional parts of Sing(Z) N D. Nevertheless we know: 

(i) The strata Red(Z) and S~ are Whitney regular over every zero-dimensional 

stratum (see [3], Lemma 1.10). 

(ii) To see that the stratum Red(Z) is Whitney regular over Si we use the 

equivalence between Whitney regular and #*-constant,  see [22]. Let a E Si, the 

equation of Z at a is 2q~ + 2 k ---- 0 and the equations of Si at a are 2 = 0, 2 = 0. 

Thus Red(Z) is the family (of germs) of plane curves given by the equation 

2 q~ + 2 k = 0, analytically trivial along Si. I 

Remark 1: Notice that S induces a Whitney stratification W of Z where {Q} 

and Red(Z) := Z \ Sing(Z) are strata. Moreover, if Red(D) := D \ Sing(D) 

denotes the set of smooth points of D and, for i C A, Ai denotes the set 

Ci \ Sing(Dred) then the partition ,4 which consists of Red(D), {Ai}ieh and 

zero-dimensional parts {/5: p C Sing(D~ed)} is a Whitney stratification of D. 

LEMMA 3: There exists a global section s I ofTr*(/:) | s such that if Z ~ is the 

zero locus of s ~ then Z ~ is smooth and transverse to S. 

Proof: Let 2 :-- Z \{Q}  c F 3. Let 6 be the linear system of projective surfaces 

of degree r in ~ such that its multiplicity at Q is greater than or equal to d (Q 

is the base point of 5). Restricting 5 to 2 and applying the Bertini Theorem (see 

[6] Corollary 10.9) there exists an open set U0 of the projective variety 6 such 

that every element Z1 of U0 is a smooth surface out of Q and it is transverse to 

every stratum, different from {Q}, of the Whitney stratification )4; of Z. 

Let Cd be the projective variety of the projective plane curves of degree d. Let 

U be the nonempty Zariski open set of Cd consisting of smooth curves Gd which 

meet Dred at d- p different points and such that Gd C 1~2 x .  UiEA i i .  

Let U1 be the open subset of the projective variety 5 which consists on those 

surfaces such that  their projectivized tangent cone at Q belongs to U. 

Every surface Z1 E U0 M U1 has only one isolated singular point at Q. Let sl 

be a global holomorphic section of s that defines Z1. Then s ~ := ~r*(Sl) | e -d 
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defines a global holomorphic section of lr* (s | g -d  and its zero locus Z' C X 

holds the following properties: 

(a) Z'  is a smooth surface in A' because Z1 has only one singular point at Q 

and its projectivized tangent cone at this point is a smooth curve, see [22]. 
(b) The surface Z' is transverse to 8. We only need look at the local equations 

of Z and Z'  at their intersection points. | 

Lemmas 2 and 3 and the equality (1) show that 

iEA PEMI PESing( D,.ea) 

Remark 2: Following the notation in Lemma 3, Remark 1 and (1) show that, 

for every smooth curve Gd in U, the generalized Milnor number of D is equal to 

(4) #(F2;D) = E # A ~ ( D ) e ( A i \ G d ) +  E # (D ,P) .  
lEA PESing(D,.ed) 

LEMMA 4: Let Si and Ai be one-dimensional strata of $, respectively A.  Then 

#&(Z)  = -(qi  - 1)(k - 1), #A,(D) = --(qi -- 1); 

e(Si \ Z') = e(Ai \ Gd) - di(d + k). 

Proof'. For every a E Si, we choose coordinates (2,9,~) around a such that  the 

equation of Z at a is 2 q' + 2 k = 0 and Si is given by 2 = 0, 2 = 0. By Example 

1, #A~(D) = - - ( q i -  1) and #3,(2) = t t(Z,a) = -(qi  - 1 ) ( k -  1). Since Si and 

Z' meet at d id  different points, e(Si \ Z') = e(Si) - di d. Finally for i E A, the 

cardinality of Mi is di(d + k) and we find that 

c ( S ~ . Z ' ) = e ( S ~ ) - d ~ d = e ( A ~ ) - d ~ ( d + k ) - d ~ d = e ( A ~ \ G d ) - d i ( d + k ) .  I 

We look at the local equations of Z at the zero-dimensional strata; see Lemma 

1. 
(i) If P E Sing(Dred) then Z a t / 5  is given by h(2,, fl) + 2 k = 0, where h = 0 is 

an equation of the germ of D at P. Example 1 shows that 

(5)  =  (2,15) = (k  - 0 ) .  

(ii) If P E Mi then Z at 15 is defined by 2 q~ + 2k9 = 0, where x = 0 is an 

equation of Ci at P. By Example 1, #~(Z) = (q~ - 1) and since the cardinality 

of h/Ii is d i ( d + k )  then 

(6) E (qi - 1) = (qi - 1)(d + k)di. 
PEMi 
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Lemma 4, identities (5) and (6) show that (3) is equivalent to 

H(X; 2, D) = ~ -(qi - 1)(k - 1)(e(Ai \ Gd) - di(d + k)) 
iEA 

+ (d + k) Z ( q i -  1)di + (k - 1) 
lEA PESing(Dr~d) 

= ( k - 1 )  ~ - ( q i - 1 ) e ( A i  \Gd)  + 
iEA PESing(D,~ed) 

r 

§ k(d + k) ~ ( q i  - 1)di. 
i=1 

The last equality and (4) give the identity 

(7) #(X; Z, D) = (k - 1)#(]72; D) + k (d + k)(d - p). 

#(D,P)  

#(D,P)  

Substituting (7) into the identity in Theorem 1 we find that 

#(V, 0) = (d - 1) 3 + k#(]?2; D) + k (d + k)(d - p). 

In case k = 1, we consider a Whitney stratification and a global holomorphic 

section as above (both choices do not depend on k). Singularities of 2 M E are 

corresponding to points of the strata Mi, i.e. points in Ci M T. The equation of 

at s u c h a p o i n t  ~5 = (0,0,0) E Mi i s x  q~+zy = 0 .  Thus #(Z, /5) = q i - 1 .  

Since the cardinality of Mi is di(d + 1) then (3) can be written as follows: 

# (X;Z)  = Z ~ #p(Z) = ~-~(q, - 1)di(d+ 1) = ( d +  1 ) ( d - p ) .  
icA PEMi q ~ l  

This equality is substituted into the identity in Theorem 1 obtaining the Milnor 

number of (V, 0). So the computation of #(V, 0) is done. 

T O P O L O G I C A L  DE T E R M INAC Y OR DE R  FOR t -SINGULARITIES.  I t  is clear from 

the formula for the Milnor number just proved that #(V, 0) only depends on D 

and k. Next we show that the Milnor number of a generic plane section of (V, 0) 

only depends on D and k too. 

LEMMA 5: Let f = fd+fd+k +''" C C{x, y, z} be the germ of a complex analytic 
function. If  its zero locus (V, O) has an isolated singular point and the divisors 
D, defined by fd, and T, defined by fd+k, have no common components then the 
Milnor number of a generic plane section of (V, O) is 

#(2)(V, 0) = ( d -  1) 2 + k - ( d - p ) ,  
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where p is the degree of the (reduced) plane curve Dred. 

Proof: Let H be a generic plane in (C 3 , 0), or a line in ]?2. The divisor Dred+Tred 
in p2 is reduced because both curves have no common components. Assume that 

H has equation z = 0. The germ (V N H, 0) is given by f (x ,  y, O) = fd(x, y, O) + 
fd+k(X, y, 0)4- . . . .  0. Since H is transverse to D~d4-Tred every root of fd(x, y, O) 
is not a root of fd+k(X, y, 0). Applying Example 5 for plane curves the proof of 

this lemma is completed (note that singularities of fd(x, y, 0) = 0 are its multiple 

roots and their Milnor numbers are their multiplicities minus one). | 

End of the proof of Theorem 4: Let (V, 0) be a t-singularity defined by f ---- 

fd+fd+k +g, where g has order greater than d+k. Consider the family of surfaces 

{(Vs, 0)}s~[0,1], where (V~, 0) is defined by the zero locus of fs = fd + fd+k + sg. 
By the previous computation of the Milnor number and Lemma 5, the sequence of 

Milnor numbers it* (s) = (#(Vs, 0), #(2)(V~, 0), d -  1) does not depend on s. Hence 

this family is topologically trivial, [22], and (V, 0) is topologically equivalent to 

(1/0,0) which is defined by the zero locus of fd + fa+k. Therefore Theorem 4 is 

proved. | 

5. S ingular i t ies  fd + fd+k 

The topological determinacy order of any t-singularity is (d + k). This section 

is devoted to understanding germs of surface in (C 3, 0) defined by polynomials 

with only two homogeneous components. Let f = fd + fd+k E C{x, y, z} be such 

a polynomial and (V, 0) C (C 3, 0) its zero locus. 

THEOREM 5: (17, 0) has an isolated singularity if and only if Sing(D) • Sing(T) 

is empty. If it is the case, its Milnor number is given by the formula 

[ 
#(V, 0) = (d - 1) 3 + k (#(Dr~d) + (d - p)(d + p - 3) + 

or equivalently, 

E ((D, T)p - 1)), 
PESing(D)nT 

# ( V ' O ) = ( d - 1 ) 3 + k (  e ( D ) + d 2 - 3 d +  E ( ( D , T ) p - 1 ) ) ,  
PCSing(D)nT 

where ( D, T)p denotes the intersection multiplicity of both curves at P. 

Notice that the formula in Theorem 4 can be obtained from the previous one. 

In order to prove the theorem we prove firstly that (V, 0) has an isolated sin- 

gularity and after that  we compute its Milnor number. 
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LEMMA 6: (V, 0) C (Ca,0) has an isolated singularity if and only if 
Sing(D) A Sing(T) is empty. 

Proof: The "only if" part is trivial. For the "if' part let 7r: (X, E) --4 (C 3, 0) be 

the blow-up at the origin. Again if Sing(D) is empty then (V, 0) has an isolated 

singular point. Let P be a singularity of D. If P is not in T, following the proof 

of Lemma 1, then singularities of V in a neighbourhood of /5  are on E. Hence 

let P be a singular point for D and a smooth point for T. An equation of V in a 

neighbourhood of P is 

f d ( X l , Y l ,  1) -~- zkl �9 f d+k(X l ,Y l ,  1) = O. 

Since T is smooth at P, there exists an analytic change of coordinates such that  

/~ has coordinates (0, 0, 0), an equation for V a t /5  is 

(8) Y~ + : r l"  g(:rl ,  Yl) + Zl k" :rl = 0, 

and E is again given by zl = 0. Hence the singular locus of V around ~5 lies on 

E. I 

COMPUTATION OF THE MILNOR NUMBER. I f / )  is a reduced divisor in p2 then 

all singularities of D are isolated and #(p2 ; D) is the sum of the Milnor numbers 

of D at its singular points. Thus we need to check that 

#(V'O) = (d -1 )a  + k E #(D,P) + k E ( ( D , T ) p - 1 ) .  
PESing(D) PESing( D)ClT 

After the origin blow-up all singularities of Z are isolated. Moreover, Example 2 

shows that  for every P E Sing(D) AT we find that #(X; Z, P) = (k - 1)#(D, P) + 

k(s - 1), where s is the intersection multiplicity of D and T at P. We finish the 

proof using Theorem 1. 

In case D is a nonreduced divisor, to prove Theorem 5 we use the same strategy 

as in Theorem 4. Consider the strict transform Z after one blow-up; look at an 

equation of the germ of Z at its singular points which are on the exceptional 

divisor E. Then the only different local situation from that in Theorem 4 is at 

those points P E Sing(Dr~d)AT. In (8), a local equation for 2 at its corresponding 
point l 5 is given and Example 2 gives its topological Milnor number. After this 

small change, all the proof is similar to the one in Theorem 4. I 
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Examples: The statement about the topological determinacy order is not true 

in this more general set-up; see the next examples of surfaces defined by two 

homogeneous terms. 

1. Let f = y2z+x2z~-x3~-z3xWy 4 +x  4 and (V, 0) the singularity defined by f .  

Theorem 5 gives #(V, 0) = 10. Let g -- f +  �88 5. By Theorem 1 the Milnor number 

of the singularity defined by g is 11; it means that (V, 0) is not (d+k)-determined. 

2. Let f be the polynomial y2(y + z) + x 3 + z3x + y4 and let (V, 0) be its zero 

7 and that  means locus. The supremum of the quotient of its polar invariants is 

that (V, 0) is (d + k)-determined, see [23]. 

6. Some projective surfaces 

We have just remarked in Theorem 1 that if (V, 0) is an isolated hypersurface 

singularity then the generalized Milnor number of its projectivized tangent cone 

at the origin is related to its Milnor number. This tangent cone is a positive 

divisor in p~- l .  It seems interesting to apply our results in Theorem 5 to study 

projective surfaces in p3 because such a surface may appear as a tangent cone 

of a 3-dimensional singularity. The results found in this section deal with the 

classification problem but from a global point of view. Therefore we consider a 

projective surface Z C ]p3 defined by 

z := y : z :  w) V :  f (x,y,z)w k + fd+  (x, y, z) = 0}. 

We give necessary and sufficient conditions for Z to have isolated singularities. 

Furthermore, we obtain a total description of its singularities in terms of their 

Milnor numbers. The case k -- 1 may be treated from Theorem 5 and from some 

results of Soares and Giblin, [21]. So from now on we assume k greater than one. 

THEOREM 6: Let Z C ]?3 be a projective surface defined by fd wk + fd+k ~- O. 

The surface Z has only isolated singularities if  and only if  T is a reduced plane 

curve and Sing(D) A Sing(T) is empty. If  this is the case the singularities of Z 

are: 

(1) The point e = (0 : 0 : 0 : 1) whose Milnor number is given in Theorem 5. 

(2) For each P E Sing(T) \ D, the point P :-- (P : O) is a singular point of Z 

and #(Z, 15) = (k - 1)#(T, P).  

(3) For each P C D n S i n g ( T ) ,  15 := (p  : 0) is a singularity of Z and 

#(Z,/5) __ (k - 1)#(T, P) + k ( (n ,  T)p  - 1). 

(4) For each P E D N T which is a smooth point for both curves and satisfies 

(D, T )p  > 1, every point /5i  := (p  : wi) is a singular point of Z, where for 
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i E {1, . . .  , k}, wi verifies the equalityw~ grad(fa)(P)+grad(fd+k)(P) = O. 
Moreover, #(Z, ~i)  = (D, T)p  - 1. 

Therefore the generalized Milnor number of Z, i.e. the sum of all local Milnor 

numbers, is equal to 

#(F3; Z) -- (d - 1) 3 + kp(F2; D) + (k - 1)#(]72; T) + k d (d + k) - k # ( D  V) T), 

where # denotes the cardinality of the intersection set D N T. 

LEMMA 7: The surface Z has only isolated singularities if  and only if  the plane 

curve T is reduced and Sing(D) M Sing(T) is empty. 

Proof: The singular locus of Z is defined by the equations 

w k grad(fd) + grad(fd+k) =0, 

kwk-  l f d =0. 

The curve T must be reduced, otherwise any multiple component L of T gives 

a singular curve of Z. By the other way, if there exists P = (ao : al : as) such 

that P E Sing(D) gl Sing(T), then the point P E F 2 defines a line Lp in ]?3 (Lp 

is the projective closure in F 3 of the affine line {(a0 : al : a2 : w): w E C}) which 

is singular for Z. 

For the "only if' part we know, by Theorem 2, that e = (0 : 0 : 0 : 1) is a 

singularity of Z. Let a be another singular point of Z. We may write a = (P  : w), 

where P is a point in F 2. For the last equation of the singular locus to vanish, 

we have only two possibilities: 

(i) The coordinate w is zero. Then grad(fd+k)(P) is zero and this implies that  

P is a singular point of T. Since T is a reduced divisor it has only finitely many 

singular points. 

(ii) P E D. Looking at the equation that defines Z, we find that P C T. Since 

T is reduced, Sing(D) M Sing(T) is empty and the degree of T is greater than 

the degree of D, curves Dred and T have no common component. The Bezout 

Theorem shows that there is only a finite number of points in D M T (P  is one of 

them). Next we prove that for each of them there exists finitely many complex 

numbers w verifying the equations of the singular locus. From the first one P is 

a smooth point of D. 

(1) If P C Sing(T) then the w-coordinate of a is zero and we are again in (i). 

(2) If P is a (smooth) point for both curves then the w-coordinate of a is 

different from zero. Let )~ C C* be a non-zero complex number such that 

(o:. o:. o:.+, 
(9) )~" \~xx' Oy ' -~z ) ( P ) = \ ~ ' Oy ' -~z ) ( P ) " 
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If A exists, then it is unique because it gives the proportionality between two 

non.zero vectors grad(fd(P)) and grad(fd+k(P)). Furthermore, if A C C* 

exists then there are exactly k different values for w such that  w k = A and 

a :  ( P :  w) E Sing(Z). I 

LEMMA 8: For every P E D N T such that P is a smooth point for both curves, 

there exists ~ E C* satisfying (9) if  and only if D and T have the same tangent 

line at P. 

Proof: After a suitable change of homogeneous coordinates we may assume that  

P = (0 : 0 : 1), and a = (0 : 0 : 1 : w0), w o r  0. Since P is a smooth point for 

both curves we deduce that  fd(x,y,  1) = ax + fly + h(x,y)  and fd+k(x,y, 1) = 

"yx + 5y + g(x, y) where h and g have order at the origin greater than one. Hence 

the identity (9) gives the equivalence in Lemma 8. I 

Lemmas 7 and 8 show that  all singularities of Z are: 

(1) The point c = (0: 0 :  0 :  1), 

(2) ( P :  0), where P G Sing(T), 

(3) for each Q which is a smooth point for D and T and such that  (D, T)Q > 1, 

Z has k singularities, each of which is (Q : w0) where w0 has been obtained 

as in "Lemma 7. 

LEMMA 9: Let P C Sing(T) \ D; the Milnor number of Z at D := (P  : 0) is 

equal to Ix(Z, P) = (k - 1)#(T, P).  

Proof'. We choose projective coordinates in ~2 such that  P = (0 : 0 : 1). An 

affine equation of Z a t / 5  is fd(x, y, 1)w k + fd+k(X, Y, 1) = 0. Example 1 gives the 

formula for the Milnor number. I 

LEMMA 10: Let P E DNSing(T);  the Milnor number of Z at /5 := (P :0) is 

#(Z,/5)  = (k - 1)#(T, P)  + k ( (D ,T)p  - 1). 

Proof: The proof follows from Example 2. I 

LEMMA 11: Let P E D M T be a smooth point for both curves such that 

the intersection multiplicity (D, T)p > 1, the Milnor number of Z at  /5o := 

( p  : wo) is equal to Ix(z,/5o) = - 1, where veri es the equality 

w~ grad(fd)(P) + grad(fd+k)(P) = O. 

Proof: We may assume that  P = (0 i.O : 1); then rio := (0 : 0 : 1 : Wo), 

Wo k ~ 0 and an affine equation .of Z in the open set pa \ { z  = 0} is given by 

fd(x, y, 1)w k + fd+k(X, Y, 1) = 0. In this affine subset 150 has affine coordinates 
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(0, 0, wo). For computing the Milnor number of Z at /~o we work in the local 

ring C{x, y, w - w0}. Since D is smooth at P there exists an analytic change 

of coordinates hi: (C2,0) -+ (C2,0) such that fd(hl(2,9), 1) = 2 and p(2,9 ) := 

fd+k (hi (2, Y), 1) satisfies 

p(2, Y) = v(2, 9) : (Y ~ + 2bl(2)Y ~-1 +"" + 2bs-1(2)9 + 2b~(2)), 

where v(0,0) r 0 and s is the intersection multiplicity of both curves at the 

origin. Let h: (C 3, (0,0, w0)) ~ (C 3, (0,0,w0)) be the change of coordinates 

h(2, Y, to) = (hi (2, Y), to)- Let p be the function f o h = 2w k + p(2, 9). Since t50 

is singular for Z we deduce that 0 = p~(O,O, wo) = v(0,0)bs(0) + Wo k and then 

v(0, 0)b~(0) = -wok. Let us expand p as a power series around (0, 0, w0): 

( k k(k-1)'"(k-J+l)'wko-J(to_wo)J ) 
p(2, 9, to) = p(2, 9) + 2 wok + ~_, i! 

j= l  

Making the change of coordinates 21 --'~ X, Yl = Y, to1 = tO -- W0, the lifting/~ of p 

in the new ring C{21,91,tol} is 

( k k (k - l ) ' " ( k - j+ l ) 'w~-J  ~) 
p m p(:~l, y l )  -1- 21 W0k -I- ~--~ j! tO 

j= l  

( k k (k - l ) ' " ( k - j+ l ) 'w~-J  ) 
= p(Xl ,91)  @ Xl WO k -{- tol ~ j !  to j -1  . 

j= l  

Since w0 is different from zero, the series 

k k(k- 1). . .  ( k -  j + 1)- w0 k-j - j-1 
j! Wl 

j= l  

is a unit in C{VYl }. Hence the change of coordinates 

22 ~ 21~ 

Y2 ~ 91, 

gives the lifting/fl of/~ in the ring C{22,92,to2}, 

p1(22, y2, to~) = p(2~, 9~) + 2~(wok + to2). 
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Moreover, pl(x2,92, W2) can be wri t ten as follows: 

Cb '~ ~-s-1 - -s ;~2 (Wo k ~- "tU2 -~" V(i:2,Y2) ( 1( 2)Y2 + ' ' " - [ -  bs-l(;~2)Y2 + bs(5:2)) ) +v(fA2,Y2)Y2. 

The  following equat ions define the last change of analytic coordinates:  

:~3 ~ :g2~ 

Y3 = Y2, 
= Cb ':~ , - s -1  W3 ?~2-{"V(X2,Y2) [ I I ,  2)Y2 'b'"q-bs-l('X2)~]2[-bs('X2))[-wko, 

because v(0, 0)bs(0) + w0 k = 0. After this change of coordinates an equat ion for 

the germ of Z at  ~0 = (0, 0, 0) is 

X 8 X3W 3 + V( 3,Y3)Y3 = 0 ,  

where v(0, 0) r 0. So the Milnor number  of Z a t /50  is (s - 1). | 

Therefore  Theorem 5 and Lemmas 7 to 11 give the proof of Theorem 6. 
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